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MOD p-ENVELOPES 

BY 
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ABSTRACT 

Suppose G is a finite p-group and k ~s the field of p elements, and let U be the 
augmentation ideal of the group algebra kG. We investigate which p-groups, G, 
have normal complements in their mod p-envelope, G*. G* is defined by 
G * = { l - u : u ~ U } .  

The type of groups under consideration here are finite p-groups  and their mod 

p-envelopes.  The mod p-envelope,  G*,  of a finite p-group,  G, can be con- 

structed as follows. 

Suppose k is the field of p elements, then G* is given by 

G * = { 1 - u : u @  U}, 

where U is the augmentat ion ideal of the group algebra kG. Clearly this 

definition is equivalent to 

k is the only irreducible k G  module thus U is also the Jacobson radical of k G  

and therefore nilpotent. Thus the inverse of 1 - u, u E U, can be expressed as 

the finite sum 

l + u + u2 + " . .  + u ' ,  

where u ' + ' = 0 .  G* therefore forms a group under multiplication in k G ,  

containing G as a subgroup. 

For a group H let H '  denote  the derived group of /4, ~ ( H )  the Frattini 

subgroup of H and H p be the subgroup of H generated by the pth powers of 

elements  of H. 
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D. B. Coleman [1] has proved that for all p-groups, G, 

i) (G*) 'N  G = G' ,  and 

ii) if N is the normalizer of G in G* and C the centralizer of G in G* then 

N = CG. 
For those p-groups which have a normal complement in their mod p-envelope 

(i.e, there exists a normal subgroup, N, such that N O G = 1 and N G  = G*) 

there are simple proofs of these results. It can also be shown that for these 

groups 

iii) ,;b(G*) n G = 4~(G), and 

iv) (G*)" n G = G p. 

The problem is now to determine which finite p-groups have normal comple- 

ments in their mod p-envelopes. Let Lp denote the set of such groups. It is clear 

that a finite p-group, G, belongs to Lp if and only if there exists an epimorphism 

from G* to G fixing G elementwise. This immediately gives the first class of 

groups belonging to Lp. 

THEOREM 1. If  G is a finite p-group, then its rood p-envelope, G*, belongs to 

L e. 

Paoor .  Define the mapping ~" as follows: 

7r : (G*)*--* G* 

x E G *  x " 

~'~ ( x ) ~  * where x = ~,g~/zs s E G 

It is easily shown that 7r is a I~omomorphism and also for all x E G* 

( x ) ~  = x .  

The most important class of p-groups known to belong to Lp is that of all finite 

abelian p-groups, but before this is proved some further results are established. 

THEOREM 2'. l f  H and K are finite p-groups and G = H • K, then G belongs to 

Lp if and only if H and K both belong to Lp. 

PROOF. Suppose both H and K belong to Lp and their normal complements 

are L and M respectively. Let a denote a typical element of G*,  i.e. 

a =  ~ Z A ,h , k , (h , k )EG* .  
h E H  k E K  

t The  proof given here of the sufficiency condition of Theorem 2 is due to D. L. Johnson.  
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Define the epimorphism 4' as follows: 

4' " G* ~ H* 

Now let /2 denote  the set 

h E H  k E K  

I2 = {a E G* : (a)4,  ~E L}. 

In a similar manner  def ine/~.  Now let N = / 2  A/~ ,  then N is normal in G*.  It is 

easily seen that N N G = 1 and it remains to show the order of N is the same as 

the index of G in G*.  

I *l l *l 
JL I =I I IG I IHIIKI =IoI 

Since N r ]  G = 1 it is clear that I N I ~ - I G * I / I  a l. 
Conversely assume G = H x K has a normal complement  in G* and thus 

there must exist a splitting epimorphism, 4', from G * to G. The composite  of the 

inclusion from H*  to G*,  4' and the natural mapping from G to H is the 

splitting epimorphism from H*  to H. Thus H, and similarly K, belongs to Lp. 

The necessary condition of Theorem 2 can be given in the slightly stronger 

form of Corollary 2.1 without any alteration to the proof. 

COROLLARY 2.1. If  G is the semi-direct product of the finite p-groups H and K 

(K normal in G), then H belongs to Lp if G does. 

LEMMA l. If  G is a finite abelian p-group, then G and G* have the same 

exponent. 

PROOF. Since the coefficients in the sum 

~ E h~,x 
x E G  

belong to GF(p) ,  then for any integer k 

~pk ~ E pk Axx . 
x t E G  

Hence a p" = 1 for all a E G* if and only if, for all x E G, x p" = 1. 

Now since the cyclic group of order n (n a power of p), Z,, has the same 

exponent  as (Z,)*,  Z,  is a direct factor of (Z.)* and thus Theorem 2 gives the 

following result. 
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THEOREM 3. All finite abelian p-groups belong to Lp. 

By establishing another sufficiency condition, more non-abelian p-groups can 

be shown to be elements of L e. Assume G is a finite p-group with its binary 

operation denoted by juxtaposition and with identity e. 

THEOREM 4. Suppose there exists a binary operation, *, on the set G such that G 

becomes an elementary abelian p-group under * with identity e. Then G belongs to 

Lp if for all a, b, c ~ G, 

(1) [c(a*b)]*c = (ca)*(cb) 

and 

(2) [(a * b )c ]* c = (ac )*(bc ) . 

PROOf. Let E* denote summation in G over * and let h*x = x * x * . . . * x  (h 

times) for any h E GF(p)  and x E G. 

Firstly note that (1) is equivalent to 

(la) z ~ *  h*x = ~ *  h*(zx)  
x E G  xEC~ 

for all E~,~hxx @ G* and all z E G. For if (1) holds, then by induction 

but 

Conversely if (la) holds 

~, hx ~ 1 (modp) .  
x E G  

c ( a * b * ( -  l ' e ) ) =  (ca)*(cb)*(-  l ' c ) ,  

but under *, e is the identity and thus 

o r  

Similarly 

c(a*b)  = (ca)*(cb)*(-  l ' c )  

[c( a *b )]* c = (ca )*(cb ). 

Define the mapping rr as follows: 

z = 

x E G  
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Since for all x C G  

homomorphism. 

rr:G* ~ G  

X A,x E* A*x. 
~Et ' i  xE(-:  

(x)~r- -x ,  it now remains to show that ~r is a 

=z*t  ,,,),x 
r E G  \ y E G  

- - ~ * A * ( g ~ * ~ * h )  by (la) 
g E G  

= ( ~ : A  : g ) ( ~ * / z  : h )  by (2a). 

Note that it is not sufficient to show that just one of the conditions (1) and (2) 

of Theorem 4 holds. A * operation can be defined on Z , - Z p  (p odd), the 

wreath product of the cyclic group of order p with itself, such that * defines an 

elementary abelian p-group satisfying (1) but not (2). 

An application of Theorem 4, to show certain p-groups belong to Lp, is to use 

the construction of Cooper  [2]*. This is to define the * operation by 

a * b~- W(a ,b ) ,  

where W(a, b) is a word in a, b. Cooper  has shown that in nilpotent groups of 

class at most three, for * to define a group, W(a, b) must have the form 

ab [a, b]" [a, b, a ] "  [a, b, b]' ,  

where r and s satisfy certain congruence relations. If * is defined in this way 

p * a -- a p, and it is clear, only groups of exponent  p can satisfy the conditions of 

Theorem 4. In general the conditions of Theorem 4 do not hold for p-groups of 

* The authors wish to thank the referee for drawing their attention to [2] and tts apphcatton m 
Theorem 5. 
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exponent p and of class three with the * operation defined in this way. Theorem 

5, however, shows that for such p-groups (p odd) of class two this definition of 

the * operation does satisfy the conditions of Theorem 4. 

THEOREM 5. For p an odd prime, p-groups o f  exponent  p and  class two belong 

to L r 

PROOF. Define * by 

a * b = ab [b, a] ~p+'. 

This defines a commutative operation since 

b * a = ba [ab] �89162 

= ab [ba] ~"+'). 

To show condition (1) holds 

[ c ( a * b)]*c = cab [ ba ]~tP+') c [ c, ab ] ~tp§ 

= cab c [ba ]~r a ]~P+'[c, b]~'+'). 

ca * cb = cacb [cb, ca] ~p§ 

= cacb [b, a ]~r al~"+"[b, c] '=`p''' 

= cabc [b, a ]i'P+"[c, al=*(P+"[c, b] ~tp+''. 

Similarly [ c ( a * b ) ]* c = ac * bc. 

It is, of course, not necessary to define a*b as a word in a, b. The following 

examples of the application of Theorem 4 to p-groups of exponent greater than p 

show two other methods of defining the * operation. 

An example of the use of Theorem 4 is the Sylow p-subgroup of the general 

linear group G L ( n ,  p )  consisting of all upper triangular (n x n) matrices over the 

field G F ( p )  with leading diagonal entries all one. Suppose A, B and C are 

matrices of this type, then define the binary operation * by 

A * B = A + B - I ,  

where I is the identity matrix. This operation satisfies the conditions of Theorem 

4 and so it remains to show that relations (1) and (2) are true. 

[ C ( A * B ) ] * C  = C ( A  + B -  I ) +  C -  I 

= C A  + CB - I  

= C A * C B .  
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Similarly relation (2) is also true and thus these groups belong to Lp. 

All 2-groups of order not greater than 8 belong to L2. As seen before abelian 

2-groups belong to L2 and the only other 2-groups of order not greater than 8 are 

the dihedral and quaternion groups. Suppose the dihedral group of order 8 is 

represented as 

(x,y Ix ̀ =  y2= 1,xy = yx- ' )  

and its elements are expressed in the form y~x 2~§ where a, /3 and y are either 

zero or one. Let 

a = y ' x  2'*k, b =  y ' x  2"§ and c = y ' x  2'+'. 

If the operation * is defined by 

a * b  = y"x 2~+w, 

where u -= i + l, v ----/+ m and w -~ k + n (mod 2), then it can be easily shown 

that 

ca*cb  = ydx2:+*, 

where d = i + l (mod 2), f = j  + m + [ ( ( -  1) ' /+ k)/2] + [ ( ( -  1)'t + n)/2] (mod 2) 

and g - k  + n (mod 2). (Square brackets denote the integer part of the 

expression included.) Since for i, /, k, n and t either zero or one, 

[ ( - 1 ) ' t + k ] + 2  [ ( - 1 ) ~ t + n ]  - = 2  [ ( - 1 ) ' " t + { k + n ( m ~  ( m ~  

it can also be easily shown that 

[c (a*b)]*c  = ydx2t+'. 

Hence relation (1) is established for the dihedral group of order eight and 

relation (2) is shown in a similar manner. Thus this group, by. Theorem 4, is a 

member of L2. The quaternion group of order eight, 

(x, y l  x ' = l , y 2 = x  2 , x y = y x - , ) ,  

is also a member  of I~ and this can be shown by an analogous method. 

The groups of order 16 and of exponent not greater than four also belong to 

L2. The three non-abelian groups of this type can be represented as follows: 

i) (x,y I x ' =  y ' =  1, xy = yx3), 
ii) {x,y,z I x ' =  y~= z 2= 1, xy = yx, xz  = zx, yz  = zyx%, 

iii) (x, y, z Ix '  = y2 = z 2 = 1, xy = yx, yz = zy, xz  = zxy ) .  
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The methods for showing that these three groups all belong to L2 are merely 

extensions of those used on the dihedral and quaternion groups of order eight. 

For example consider group (ii). Let the elements of this group be expressed in 

the form zay~x 2~§ where a, /3, 3' and 8 are either zero or one and also let 

a = z ' y ' x  2k~;, b = z '~y~x  2"+s and c = z'y~x 2~ 

The operation * is defined by addition of corresponding indices modulo 2 in an 

analogous way to the previous example. Now 

c a * c b  = zdyrx  2"~h = [ c ( a * b ) ] * c ,  

where d - = i + m  (rood 2), f - = j + n  (mod 2), g - - k + r + u ( i + m ) + h ( l + s )  

(rood 2) and h =-- l + s (mod 2). 

Similarly relation (2) is shown and hence this group belongs to L2. 

Not every p-group does belong to Le, for example, the dihedral group of order 

16, DI~, does not have a normal complement in its mod 2-envelope. This has 

been shown by the use of a computer using the following argument. Suppose a 

normal complement, N, exists, then let N = be the set of elements of (D,6)* not in 

N. The conjugates of the non-trivial elements of D,6 belong to N c. If 

a, b ~ (D~6)* and if a b - ' a b  E N C, then so does a and all its conjugates, similarly 

the commutator (a, b) could also be used. By examining enough elements of this 

type, the order of N ~ can be shown to be greater than 2 ~ - 2 H (2 I~ is the order of 

(DI,,)* and 211 is the required order of N). 
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